Total
8822 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2020-25683 | 3 Debian, Fedoraproject, Thekelleys | 3 Debian Linux, Fedora, Dnsmasq | 2023-11-07 | 7.1 HIGH | 5.9 MEDIUM |
| A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in dnsmasq when DNSSEC is enabled and before it validates the received DNS entries. A remote attacker, who can create valid DNS replies, could use this flaw to cause an overflow in a heap-allocated memory. This flaw is caused by the lack of length checks in rfc1035.c:extract_name(), which could be abused to make the code execute memcpy() with a negative size in get_rdata() and cause a crash in dnsmasq, resulting in a denial of service. The highest threat from this vulnerability is to system availability. | |||||
| CVE-2020-25682 | 3 Debian, Fedoraproject, Thekelleys | 3 Debian Linux, Fedora, Dnsmasq | 2023-11-07 | 8.3 HIGH | 8.1 HIGH |
| A flaw was found in dnsmasq before 2.83. A buffer overflow vulnerability was discovered in the way dnsmasq extract names from DNS packets before validating them with DNSSEC data. An attacker on the network, who can create valid DNS replies, could use this flaw to cause an overflow with arbitrary data in a heap-allocated memory, possibly executing code on the machine. The flaw is in the rfc1035.c:extract_name() function, which writes data to the memory pointed by name assuming MAXDNAME*2 bytes are available in the buffer. However, in some code execution paths, it is possible extract_name() gets passed an offset from the base buffer, thus reducing, in practice, the number of available bytes that can be written in the buffer. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability. | |||||
| CVE-2020-25681 | 3 Debian, Fedoraproject, Thekelleys | 3 Debian Linux, Fedora, Dnsmasq | 2023-11-07 | 8.3 HIGH | 8.1 HIGH |
| A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in the way RRSets are sorted before validating with DNSSEC data. An attacker on the network, who can forge DNS replies such as that they are accepted as valid, could use this flaw to cause a buffer overflow with arbitrary data in a heap memory segment, possibly executing code on the machine. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability. | |||||
| CVE-2020-25674 | 2 Debian, Imagemagick | 2 Debian Linux, Imagemagick | 2023-11-07 | 4.3 MEDIUM | 5.5 MEDIUM |
| WriteOnePNGImage() from coders/png.c (the PNG coder) has a for loop with an improper exit condition that can allow an out-of-bounds READ via heap-buffer-overflow. This occurs because it is possible for the colormap to have less than 256 valid values but the loop condition will loop 256 times, attempting to pass invalid colormap data to the event logger. The patch replaces the hardcoded 256 value with a call to MagickMin() to ensure the proper value is used. This could impact application availability when a specially crafted input file is processed by ImageMagick. This flaw affects ImageMagick versions prior to 7.0.8-68. | |||||
| CVE-2020-25669 | 3 Debian, Linux, Netapp | 21 Debian Linux, Linux Kernel, Cloud Backup and 18 more | 2023-11-07 | 7.2 HIGH | 7.8 HIGH |
| A vulnerability was found in the Linux Kernel where the function sunkbd_reinit having been scheduled by sunkbd_interrupt before sunkbd being freed. Though the dangling pointer is set to NULL in sunkbd_disconnect, there is still an alias in sunkbd_reinit causing Use After Free. | |||||
| CVE-2020-25668 | 3 Debian, Linux, Netapp | 26 Debian Linux, Linux Kernel, 500f and 23 more | 2023-11-07 | 6.9 MEDIUM | 7.0 HIGH |
| A flaw was found in Linux Kernel because access to the global variable fg_console is not properly synchronized leading to a use after free in con_font_op. | |||||
| CVE-2020-25665 | 2 Debian, Imagemagick | 2 Debian Linux, Imagemagick | 2023-11-07 | 4.3 MEDIUM | 5.5 MEDIUM |
| The PALM image coder at coders/palm.c makes an improper call to AcquireQuantumMemory() in routine WritePALMImage() because it needs to be offset by 256. This can cause a out-of-bounds read later on in the routine. The patch adds 256 to bytes_per_row in the call to AcquireQuantumMemory(). This could cause impact to reliability. This flaw affects ImageMagick versions prior to 7.0.8-68. | |||||
| CVE-2020-25653 | 3 Debian, Fedoraproject, Spice-space | 3 Debian Linux, Fedora, Spice-vdagent | 2023-11-07 | 5.4 MEDIUM | 6.3 MEDIUM |
| A race condition vulnerability was found in the way the spice-vdagentd daemon handled new client connections. This flaw may allow an unprivileged local guest user to become the active agent for spice-vdagentd, possibly resulting in a denial of service or information leakage from the host. The highest threat from this vulnerability is to data confidentiality as well as system availability. This flaw affects spice-vdagent versions 0.20 and prior. | |||||
| CVE-2020-25652 | 3 Debian, Fedoraproject, Spice-space | 3 Debian Linux, Fedora, Spice-vdagent | 2023-11-07 | 4.9 MEDIUM | 5.5 MEDIUM |
| A flaw was found in the spice-vdagentd daemon, where it did not properly handle client connections that can be established via the UNIX domain socket in `/run/spice-vdagentd/spice-vdagent-sock`. Any unprivileged local guest user could use this flaw to prevent legitimate agents from connecting to the spice-vdagentd daemon, resulting in a denial of service. The highest threat from this vulnerability is to system availability. This flaw affects spice-vdagent versions 0.20 and prior. | |||||
| CVE-2020-25651 | 3 Debian, Fedoraproject, Spice-space | 3 Debian Linux, Fedora, Spice-vdagent | 2023-11-07 | 3.3 LOW | 6.4 MEDIUM |
| A flaw was found in the SPICE file transfer protocol. File data from the host system can end up in full or in parts in the client connection of an illegitimate local user in the VM system. Active file transfers from other users could also be interrupted, resulting in a denial of service. The highest threat from this vulnerability is to data confidentiality as well as system availability. This flaw affects spice-vdagent versions 0.20 and prior. | |||||
| CVE-2020-25650 | 3 Debian, Fedoraproject, Spice-space | 3 Debian Linux, Fedora, Spice-vdagent | 2023-11-07 | 2.1 LOW | 5.5 MEDIUM |
| A flaw was found in the way the spice-vdagentd daemon handled file transfers from the host system to the virtual machine. Any unprivileged local guest user with access to the UNIX domain socket path `/run/spice-vdagentd/spice-vdagent-sock` could use this flaw to perform a memory denial of service for spice-vdagentd or even other processes in the VM system. The highest threat from this vulnerability is to system availability. This flaw affects spice-vdagent versions 0.20 and previous versions. | |||||
| CVE-2020-25638 | 4 Debian, Hibernate, Oracle and 1 more | 5 Debian Linux, Hibernate Orm, Communications Cloud Native Core Console and 2 more | 2023-11-07 | 5.8 MEDIUM | 7.4 HIGH |
| A flaw was found in hibernate-core in versions prior to and including 5.4.23.Final. A SQL injection in the implementation of the JPA Criteria API can permit unsanitized literals when a literal is used in the SQL comments of the query. This flaw could allow an attacker to access unauthorized information or possibly conduct further attacks. The highest threat from this vulnerability is to data confidentiality and integrity. | |||||
| CVE-2020-25626 | 3 Debian, Encode, Redhat | 3 Debian Linux, Django Rest Framework, Ceph Storage | 2023-11-07 | 4.3 MEDIUM | 6.1 MEDIUM |
| A flaw was found in Django REST Framework versions before 3.12.0 and before 3.11.2. When using the browseable API viewer, Django REST Framework fails to properly escape certain strings that can come from user input. This allows a user who can control those strings to inject malicious <script> tags, leading to a cross-site-scripting (XSS) vulnerability. | |||||
| CVE-2020-25604 | 4 Debian, Fedoraproject, Opensuse and 1 more | 4 Debian Linux, Fedora, Leap and 1 more | 2023-11-07 | 1.9 LOW | 4.7 MEDIUM |
| An issue was discovered in Xen through 4.14.x. There is a race condition when migrating timers between x86 HVM vCPUs. When migrating timers of x86 HVM guests between its vCPUs, the locking model used allows for a second vCPU of the same guest (also operating on the timers) to release a lock that it didn't acquire. The most likely effect of the issue is a hang or crash of the hypervisor, i.e., a Denial of Service (DoS). All versions of Xen are affected. Only x86 systems are vulnerable. Arm systems are not vulnerable. Only x86 HVM guests can leverage the vulnerability. x86 PV and PVH cannot leverage the vulnerability. Only guests with more than one vCPU can exploit the vulnerability. | |||||
| CVE-2020-25603 | 4 Debian, Fedoraproject, Opensuse and 1 more | 4 Debian Linux, Fedora, Leap and 1 more | 2023-11-07 | 4.6 MEDIUM | 7.8 HIGH |
| An issue was discovered in Xen through 4.14.x. There are missing memory barriers when accessing/allocating an event channel. Event channels control structures can be accessed lockless as long as the port is considered to be valid. Such a sequence is missing an appropriate memory barrier (e.g., smp_*mb()) to prevent both the compiler and CPU from re-ordering access. A malicious guest may be able to cause a hypervisor crash resulting in a Denial of Service (DoS). Information leak and privilege escalation cannot be excluded. Systems running all versions of Xen are affected. Whether a system is vulnerable will depend on the CPU and compiler used to build Xen. For all systems, the presence and the scope of the vulnerability depend on the precise re-ordering performed by the compiler used to build Xen. We have not been able to survey compilers; consequently we cannot say which compiler(s) might produce vulnerable code (with which code generation options). GCC documentation clearly suggests that re-ordering is possible. Arm systems will also be vulnerable if the CPU is able to re-order memory access. Please consult your CPU vendor. x86 systems are only vulnerable if a compiler performs re-ordering. | |||||
| CVE-2020-25602 | 4 Debian, Fedoraproject, Opensuse and 1 more | 4 Debian Linux, Fedora, Leap and 1 more | 2023-11-07 | 4.6 MEDIUM | 6.0 MEDIUM |
| An issue was discovered in Xen through 4.14.x. An x86 PV guest can trigger a host OS crash when handling guest access to MSR_MISC_ENABLE. When a guest accesses certain Model Specific Registers, Xen first reads the value from hardware to use as the basis for auditing the guest access. For the MISC_ENABLE MSR, which is an Intel specific MSR, this MSR read is performed without error handling for a #GP fault, which is the consequence of trying to read this MSR on non-Intel hardware. A buggy or malicious PV guest administrator can crash Xen, resulting in a host Denial of Service. Only x86 systems are vulnerable. ARM systems are not vulnerable. Only Xen versions 4.11 and onwards are vulnerable. 4.10 and earlier are not vulnerable. Only x86 systems that do not implement the MISC_ENABLE MSR (0x1a0) are vulnerable. AMD and Hygon systems do not implement this MSR and are vulnerable. Intel systems do implement this MSR and are not vulnerable. Other manufacturers have not been checked. Only x86 PV guests can exploit the vulnerability. x86 HVM/PVH guests cannot exploit the vulnerability. | |||||
| CVE-2020-25601 | 4 Debian, Fedoraproject, Opensuse and 1 more | 4 Debian Linux, Fedora, Leap and 1 more | 2023-11-07 | 4.9 MEDIUM | 5.5 MEDIUM |
| An issue was discovered in Xen through 4.14.x. There is a lack of preemption in evtchn_reset() / evtchn_destroy(). In particular, the FIFO event channel model allows guests to have a large number of event channels active at a time. Closing all of these (when resetting all event channels or when cleaning up after the guest) may take extended periods of time. So far, there was no arrangement for preemption at suitable intervals, allowing a CPU to spend an almost unbounded amount of time in the processing of these operations. Malicious or buggy guest kernels can mount a Denial of Service (DoS) attack affecting the entire system. All Xen versions are vulnerable in principle. Whether versions 4.3 and older are vulnerable depends on underlying hardware characteristics. | |||||
| CVE-2020-25600 | 4 Debian, Fedoraproject, Opensuse and 1 more | 4 Debian Linux, Fedora, Leap and 1 more | 2023-11-07 | 4.9 MEDIUM | 5.5 MEDIUM |
| An issue was discovered in Xen through 4.14.x. Out of bounds event channels are available to 32-bit x86 domains. The so called 2-level event channel model imposes different limits on the number of usable event channels for 32-bit x86 domains vs 64-bit or Arm (either bitness) ones. 32-bit x86 domains can use only 1023 channels, due to limited space in their shared (between guest and Xen) information structure, whereas all other domains can use up to 4095 in this model. The recording of the respective limit during domain initialization, however, has occurred at a time where domains are still deemed to be 64-bit ones, prior to actually honoring respective domain properties. At the point domains get recognized as 32-bit ones, the limit didn't get updated accordingly. Due to this misbehavior in Xen, 32-bit domains (including Domain 0) servicing other domains may observe event channel allocations to succeed when they should really fail. Subsequent use of such event channels would then possibly lead to corruption of other parts of the shared info structure. An unprivileged guest may cause another domain, in particular Domain 0, to misbehave. This may lead to a Denial of Service (DoS) for the entire system. All Xen versions from 4.4 onwards are vulnerable. Xen versions 4.3 and earlier are not vulnerable. Only x86 32-bit domains servicing other domains are vulnerable. Arm systems, as well as x86 64-bit domains, are not vulnerable. | |||||
| CVE-2020-25599 | 4 Debian, Fedoraproject, Opensuse and 1 more | 4 Debian Linux, Fedora, Leap and 1 more | 2023-11-07 | 4.4 MEDIUM | 7.0 HIGH |
| An issue was discovered in Xen through 4.14.x. There are evtchn_reset() race conditions. Uses of EVTCHNOP_reset (potentially by a guest on itself) or XEN_DOMCTL_soft_reset (by itself covered by XSA-77) can lead to the violation of various internal assumptions. This may lead to out of bounds memory accesses or triggering of bug checks. In particular, x86 PV guests may be able to elevate their privilege to that of the host. Host and guest crashes are also possible, leading to a Denial of Service (DoS). Information leaks cannot be ruled out. All Xen versions from 4.5 onwards are vulnerable. Xen versions 4.4 and earlier are not vulnerable. | |||||
| CVE-2020-25596 | 4 Debian, Fedoraproject, Opensuse and 1 more | 4 Debian Linux, Fedora, Leap and 1 more | 2023-11-07 | 2.1 LOW | 5.5 MEDIUM |
| An issue was discovered in Xen through 4.14.x. x86 PV guest kernels can experience denial of service via SYSENTER. The SYSENTER instruction leaves various state sanitization activities to software. One of Xen's sanitization paths injects a #GP fault, and incorrectly delivers it twice to the guest. This causes the guest kernel to observe a kernel-privilege #GP fault (typically fatal) rather than a user-privilege #GP fault (usually converted into SIGSEGV/etc.). Malicious or buggy userspace can crash the guest kernel, resulting in a VM Denial of Service. All versions of Xen from 3.2 onwards are vulnerable. Only x86 systems are vulnerable. ARM platforms are not vulnerable. Only x86 systems that support the SYSENTER instruction in 64bit mode are vulnerable. This is believed to be Intel, Centaur, and Shanghai CPUs. AMD and Hygon CPUs are not believed to be vulnerable. Only x86 PV guests can exploit the vulnerability. x86 PVH / HVM guests cannot exploit the vulnerability. | |||||
