Filtered by vendor Linux
Subscribe
Total
6218 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2021-47542 | 1 Linux | 1 Linux Kernel | 2024-06-10 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net: qlogic: qlcnic: Fix a NULL pointer dereference in qlcnic_83xx_add_rings() In qlcnic_83xx_add_rings(), the indirect function of ahw->hw_ops->alloc_mbx_args will be called to allocate memory for cmd.req.arg, and there is a dereference of it in qlcnic_83xx_add_rings(), which could lead to a NULL pointer dereference on failure of the indirect function like qlcnic_83xx_alloc_mbx_args(). Fix this bug by adding a check of alloc_mbx_args(), this patch imitates the logic of mbx_cmd()'s failure handling. This bug was found by a static analyzer. The analysis employs differential checking to identify inconsistent security operations (e.g., checks or kfrees) between two code paths and confirms that the inconsistent operations are not recovered in the current function or the callers, so they constitute bugs. Note that, as a bug found by static analysis, it can be a false positive or hard to trigger. Multiple researchers have cross-reviewed the bug. Builds with CONFIG_QLCNIC=m show no new warnings, and our static analyzer no longer warns about this code. | |||||
| CVE-2021-47546 | 1 Linux | 1 Linux Kernel | 2024-06-10 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: ipv6: fix memory leak in fib6_rule_suppress The kernel leaks memory when a `fib` rule is present in IPv6 nftables firewall rules and a suppress_prefix rule is present in the IPv6 routing rules (used by certain tools such as wg-quick). In such scenarios, every incoming packet will leak an allocation in `ip6_dst_cache` slab cache. After some hours of `bpftrace`-ing and source code reading, I tracked down the issue to ca7a03c41753 ("ipv6: do not free rt if FIB_LOOKUP_NOREF is set on suppress rule"). The problem with that change is that the generic `args->flags` always have `FIB_LOOKUP_NOREF` set[1][2] but the IPv6-specific flag `RT6_LOOKUP_F_DST_NOREF` might not be, leading to `fib6_rule_suppress` not decreasing the refcount when needed. How to reproduce: - Add the following nftables rule to a prerouting chain: meta nfproto ipv6 fib saddr . mark . iif oif missing drop This can be done with: sudo nft create table inet test sudo nft create chain inet test test_chain '{ type filter hook prerouting priority filter + 10; policy accept; }' sudo nft add rule inet test test_chain meta nfproto ipv6 fib saddr . mark . iif oif missing drop - Run: sudo ip -6 rule add table main suppress_prefixlength 0 - Watch `sudo slabtop -o | grep ip6_dst_cache` to see memory usage increase with every incoming ipv6 packet. This patch exposes the protocol-specific flags to the protocol specific `suppress` function, and check the protocol-specific `flags` argument for RT6_LOOKUP_F_DST_NOREF instead of the generic FIB_LOOKUP_NOREF when decreasing the refcount, like this. [1]: https://github.com/torvalds/linux/blob/ca7a03c4175366a92cee0ccc4fec0038c3266e26/net/ipv6/fib6_rules.c#L71 [2]: https://github.com/torvalds/linux/blob/ca7a03c4175366a92cee0ccc4fec0038c3266e26/net/ipv6/fib6_rules.c#L99 | |||||
| CVE-2019-18683 | 6 Broadcom, Canonical, Debian and 3 more | 23 Fabric Operating System, Ubuntu Linux, Debian Linux and 20 more | 2024-06-07 | 6.9 MEDIUM | 7.0 HIGH |
| An issue was discovered in drivers/media/platform/vivid in the Linux kernel through 5.3.8. It is exploitable for privilege escalation on some Linux distributions where local users have /dev/video0 access, but only if the driver happens to be loaded. There are multiple race conditions during streaming stopping in this driver (part of the V4L2 subsystem). These issues are caused by wrong mutex locking in vivid_stop_generating_vid_cap(), vivid_stop_generating_vid_out(), sdr_cap_stop_streaming(), and the corresponding kthreads. At least one of these race conditions leads to a use-after-free. | |||||
| CVE-2014-8159 | 3 Canonical, Debian, Linux | 3 Ubuntu Linux, Debian Linux, Linux Kernel | 2024-06-06 | 6.9 MEDIUM | N/A |
| The InfiniBand (IB) implementation in the Linux kernel package before 2.6.32-504.12.2 on Red Hat Enterprise Linux (RHEL) 6 does not properly restrict use of User Verbs for registration of memory regions, which allows local users to access arbitrary physical memory locations, and consequently cause a denial of service (system crash) or gain privileges, by leveraging permissions on a uverbs device under /dev/infiniband/. | |||||
| CVE-2014-3186 | 2 Canonical, Linux | 2 Ubuntu Linux, Linux Kernel | 2024-06-06 | 6.9 MEDIUM | N/A |
| Buffer overflow in the picolcd_raw_event function in devices/hid/hid-picolcd_core.c in the PicoLCD HID device driver in the Linux kernel through 3.16.3, as used in Android on Nexus 7 devices, allows physically proximate attackers to cause a denial of service (system crash) or possibly execute arbitrary code via a crafted device that sends a large report. | |||||
| CVE-2024-0340 | 1 Linux | 1 Linux Kernel | 2024-06-05 | N/A | 5.5 MEDIUM |
| A vulnerability was found in vhost_new_msg in drivers/vhost/vhost.c in the Linux kernel, which does not properly initialize memory in messages passed between virtual guests and the host operating system in the vhost/vhost.c:vhost_new_msg() function. This issue can allow local privileged users to read some kernel memory contents when reading from the /dev/vhost-net device file. | |||||
| CVE-2023-6240 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2024-06-05 | N/A | 6.5 MEDIUM |
| A Marvin vulnerability side-channel leakage was found in the RSA decryption operation in the Linux Kernel. This issue may allow a network attacker to decrypt ciphertexts or forge signatures, limiting the services that use that private key. | |||||
| CVE-2023-24069 | 4 Apple, Linux, Microsoft and 1 more | 4 Macos, Linux Kernel, Windows and 1 more | 2024-06-04 | N/A | 3.3 LOW |
| Signal Desktop before 6.2.0 on Windows, Linux, and macOS allows an attacker to obtain potentially sensitive attachments sent in messages from the attachments.noindex directory. Cached attachments are not effectively cleared. In some cases, even after a self-initiated file deletion, an attacker can still recover the file if it was previously replied to in a conversation. (Local filesystem access is needed by the attacker.) NOTE: the vendor disputes the relevance of this finding because the product is not intended to protect against adversaries with this degree of local access. | |||||
| CVE-2020-12656 | 3 Canonical, Linux, Opensuse | 3 Ubuntu Linux, Linux Kernel, Leap | 2024-06-04 | 2.1 LOW | 5.5 MEDIUM |
| gss_mech_free in net/sunrpc/auth_gss/gss_mech_switch.c in the rpcsec_gss_krb5 implementation in the Linux kernel through 5.6.10 lacks certain domain_release calls, leading to a memory leak. Note: This was disputed with the assertion that the issue does not grant any access not already available. It is a problem that on unloading a specific kernel module some memory is leaked, but loading kernel modules is a privileged operation. A user could also write a kernel module to consume any amount of memory they like and load that replicating the effect of this bug | |||||
| CVE-2019-19065 | 3 Canonical, Linux, Opensuse | 3 Ubuntu Linux, Linux Kernel, Leap | 2024-06-04 | 4.7 MEDIUM | 4.7 MEDIUM |
| A memory leak in the sdma_init() function in drivers/infiniband/hw/hfi1/sdma.c in the Linux kernel before 5.3.9 allows attackers to cause a denial of service (memory consumption) by triggering rhashtable_init() failures, aka CID-34b3be18a04e. NOTE: This has been disputed as not a vulnerability because "rhashtable_init() can only fail if it is passed invalid values in the second parameter's struct, but when invoked from sdma_init() that is a pointer to a static const struct, so an attacker could only trigger failure if they could corrupt kernel memory (in which case a small memory leak is not a significant problem). | |||||
| CVE-2019-16229 | 3 Canonical, Linux, Redhat | 3 Ubuntu Linux, Linux Kernel, Enterprise Linux | 2024-06-04 | 4.7 MEDIUM | 4.1 MEDIUM |
| drivers/gpu/drm/amd/amdkfd/kfd_interrupt.c in the Linux kernel 5.2.14 does not check the alloc_workqueue return value, leading to a NULL pointer dereference. NOTE: The security community disputes this issues as not being serious enough to be deserving a CVE id | |||||
| CVE-2021-22543 | 4 Debian, Fedoraproject, Linux and 1 more | 21 Debian Linux, Fedora, Linux Kernel and 18 more | 2024-05-29 | 4.6 MEDIUM | 7.8 HIGH |
| An issue was discovered in Linux: KVM through Improper handling of VM_IO|VM_PFNMAP vmas in KVM can bypass RO checks and can lead to pages being freed while still accessible by the VMM and guest. This allows users with the ability to start and control a VM to read/write random pages of memory and can result in local privilege escalation. | |||||
| CVE-2024-26594 | 1 Linux | 1 Linux Kernel | 2024-05-29 | N/A | 7.1 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: validate mech token in session setup If client send invalid mech token in session setup request, ksmbd validate and make the error if it is invalid. | |||||
| CVE-2024-26592 | 1 Linux | 1 Linux Kernel | 2024-05-29 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix UAF issue in ksmbd_tcp_new_connection() The race is between the handling of a new TCP connection and its disconnection. It leads to UAF on `struct tcp_transport` in ksmbd_tcp_new_connection() function. | |||||
| CVE-2023-52441 | 1 Linux | 1 Linux Kernel | 2024-05-28 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix out of bounds in init_smb2_rsp_hdr() If client send smb2 negotiate request and then send smb1 negotiate request, init_smb2_rsp_hdr is called for smb1 negotiate request since need_neg is set to false. This patch ignore smb1 packets after ->need_neg is set to false. | |||||
| CVE-2023-52440 | 1 Linux | 1 Linux Kernel | 2024-05-28 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix slub overflow in ksmbd_decode_ntlmssp_auth_blob() If authblob->SessionKey.Length is bigger than session key size(CIFS_KEY_SIZE), slub overflow can happen in key exchange codes. cifs_arc4_crypt copy to session key array from SessionKey from client. | |||||
| CVE-2024-26952 | 1 Linux | 1 Linux Kernel | 2024-05-25 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix potencial out-of-bounds when buffer offset is invalid I found potencial out-of-bounds when buffer offset fields of a few requests is invalid. This patch set the minimum value of buffer offset field to ->Buffer offset to validate buffer length. | |||||
| CVE-2024-26584 | 1 Linux | 1 Linux Kernel | 2024-05-25 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net: tls: handle backlogging of crypto requests Since we're setting the CRYPTO_TFM_REQ_MAY_BACKLOG flag on our requests to the crypto API, crypto_aead_{encrypt,decrypt} can return -EBUSY instead of -EINPROGRESS in valid situations. For example, when the cryptd queue for AESNI is full (easy to trigger with an artificially low cryptd.cryptd_max_cpu_qlen), requests will be enqueued to the backlog but still processed. In that case, the async callback will also be called twice: first with err == -EINPROGRESS, which it seems we can just ignore, then with err == 0. Compared to Sabrina's original patch this version uses the new tls_*crypt_async_wait() helpers and converts the EBUSY to EINPROGRESS to avoid having to modify all the error handling paths. The handling is identical. | |||||
| CVE-2024-26583 | 1 Linux | 1 Linux Kernel | 2024-05-25 | N/A | 4.7 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: tls: fix race between async notify and socket close The submitting thread (one which called recvmsg/sendmsg) may exit as soon as the async crypto handler calls complete() so any code past that point risks touching already freed data. Try to avoid the locking and extra flags altogether. Have the main thread hold an extra reference, this way we can depend solely on the atomic ref counter for synchronization. Don't futz with reiniting the completion, either, we are now tightly controlling when completion fires. | |||||
| CVE-2023-52434 | 1 Linux | 1 Linux Kernel | 2024-05-25 | N/A | 8.0 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential OOBs in smb2_parse_contexts() Validate offsets and lengths before dereferencing create contexts in smb2_parse_contexts(). This fixes following oops when accessing invalid create contexts from server: BUG: unable to handle page fault for address: ffff8881178d8cc3 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 4a01067 P4D 4a01067 PUD 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 3 PID: 1736 Comm: mount.cifs Not tainted 6.7.0-rc4 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 RIP: 0010:smb2_parse_contexts+0xa0/0x3a0 [cifs] Code: f8 10 75 13 48 b8 93 ad 25 50 9c b4 11 e7 49 39 06 0f 84 d2 00 00 00 8b 45 00 85 c0 74 61 41 29 c5 48 01 c5 41 83 fd 0f 76 55 <0f> b7 7d 04 0f b7 45 06 4c 8d 74 3d 00 66 83 f8 04 75 bc ba 04 00 RSP: 0018:ffffc900007939e0 EFLAGS: 00010216 RAX: ffffc90000793c78 RBX: ffff8880180cc000 RCX: ffffc90000793c90 RDX: ffffc90000793cc0 RSI: ffff8880178d8cc0 RDI: ffff8880180cc000 RBP: ffff8881178d8cbf R08: ffffc90000793c22 R09: 0000000000000000 R10: ffff8880180cc000 R11: 0000000000000024 R12: 0000000000000000 R13: 0000000000000020 R14: 0000000000000000 R15: ffffc90000793c22 FS: 00007f873753cbc0(0000) GS:ffff88806bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffff8881178d8cc3 CR3: 00000000181ca000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x181/0x480 ? search_module_extables+0x19/0x60 ? srso_alias_return_thunk+0x5/0xfbef5 ? exc_page_fault+0x1b6/0x1c0 ? asm_exc_page_fault+0x26/0x30 ? smb2_parse_contexts+0xa0/0x3a0 [cifs] SMB2_open+0x38d/0x5f0 [cifs] ? smb2_is_path_accessible+0x138/0x260 [cifs] smb2_is_path_accessible+0x138/0x260 [cifs] cifs_is_path_remote+0x8d/0x230 [cifs] cifs_mount+0x7e/0x350 [cifs] cifs_smb3_do_mount+0x128/0x780 [cifs] smb3_get_tree+0xd9/0x290 [cifs] vfs_get_tree+0x2c/0x100 ? capable+0x37/0x70 path_mount+0x2d7/0xb80 ? srso_alias_return_thunk+0x5/0xfbef5 ? _raw_spin_unlock_irqrestore+0x44/0x60 __x64_sys_mount+0x11a/0x150 do_syscall_64+0x47/0xf0 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7f8737657b1e | |||||
