Filtered by vendor Oracle
Subscribe
Total
9593 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2021-25329 | 3 Apache, Debian, Oracle | 12 Tomcat, Debian Linux, Agile Plm and 9 more | 2023-11-07 | 4.4 MEDIUM | 7.0 HIGH |
| The fix for CVE-2020-9484 was incomplete. When using Apache Tomcat 10.0.0-M1 to 10.0.0, 9.0.0.M1 to 9.0.41, 8.5.0 to 8.5.61 or 7.0.0. to 7.0.107 with a configuration edge case that was highly unlikely to be used, the Tomcat instance was still vulnerable to CVE-2020-9494. Note that both the previously published prerequisites for CVE-2020-9484 and the previously published mitigations for CVE-2020-9484 also apply to this issue. | |||||
| CVE-2021-25219 | 6 Debian, Fedoraproject, Isc and 3 more | 23 Debian Linux, Fedora, Bind and 20 more | 2023-11-07 | 5.0 MEDIUM | 5.3 MEDIUM |
| In BIND 9.3.0 -> 9.11.35, 9.12.0 -> 9.16.21, and versions 9.9.3-S1 -> 9.11.35-S1 and 9.16.8-S1 -> 9.16.21-S1 of BIND Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.18 of the BIND 9.17 development branch, exploitation of broken authoritative servers using a flaw in response processing can cause degradation in BIND resolver performance. The way the lame cache is currently designed makes it possible for its internal data structures to grow almost infinitely, which may cause significant delays in client query processing. | |||||
| CVE-2021-25215 | 6 Debian, Fedoraproject, Isc and 3 more | 25 Debian Linux, Fedora, Bind and 22 more | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
| In BIND 9.0.0 -> 9.11.29, 9.12.0 -> 9.16.13, and versions BIND 9.9.3-S1 -> 9.11.29-S1 and 9.16.8-S1 -> 9.16.13-S1 of BIND Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.11 of the BIND 9.17 development branch, when a vulnerable version of named receives a query for a record triggering the flaw described above, the named process will terminate due to a failed assertion check. The vulnerability affects all currently maintained BIND 9 branches (9.11, 9.11-S, 9.16, 9.16-S, 9.17) as well as all other versions of BIND 9. | |||||
| CVE-2021-25122 | 3 Apache, Debian, Oracle | 12 Tomcat, Debian Linux, Agile Plm and 9 more | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
| When responding to new h2c connection requests, Apache Tomcat versions 10.0.0-M1 to 10.0.0, 9.0.0.M1 to 9.0.41 and 8.5.0 to 8.5.61 could duplicate request headers and a limited amount of request body from one request to another meaning user A and user B could both see the results of user A's request. | |||||
| CVE-2021-24122 | 3 Apache, Debian, Oracle | 3 Tomcat, Debian Linux, Agile Plm | 2023-11-07 | 4.3 MEDIUM | 5.9 MEDIUM |
| When serving resources from a network location using the NTFS file system, Apache Tomcat versions 10.0.0-M1 to 10.0.0-M9, 9.0.0.M1 to 9.0.39, 8.5.0 to 8.5.59 and 7.0.0 to 7.0.106 were susceptible to JSP source code disclosure in some configurations. The root cause was the unexpected behaviour of the JRE API File.getCanonicalPath() which in turn was caused by the inconsistent behaviour of the Windows API (FindFirstFileW) in some circumstances. | |||||
| CVE-2021-23926 | 4 Apache, Debian, Netapp and 1 more | 7 Xmlbeans, Debian Linux, Oncommand Unified Manager Core Package and 4 more | 2023-11-07 | 6.4 MEDIUM | 9.1 CRITICAL |
| The XML parsers used by XMLBeans up to version 2.6.0 did not set the properties needed to protect the user from malicious XML input. Vulnerabilities include possibilities for XML Entity Expansion attacks. Affects XMLBeans up to and including v2.6.0. | |||||
| CVE-2021-23841 | 7 Apple, Debian, Netapp and 4 more | 23 Ipados, Iphone Os, Macos and 20 more | 2023-11-07 | 4.3 MEDIUM | 5.9 MEDIUM |
| The OpenSSL public API function X509_issuer_and_serial_hash() attempts to create a unique hash value based on the issuer and serial number data contained within an X509 certificate. However it fails to correctly handle any errors that may occur while parsing the issuer field (which might occur if the issuer field is maliciously constructed). This may subsequently result in a NULL pointer deref and a crash leading to a potential denial of service attack. The function X509_issuer_and_serial_hash() is never directly called by OpenSSL itself so applications are only vulnerable if they use this function directly and they use it on certificates that may have been obtained from untrusted sources. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x). | |||||
| CVE-2021-23840 | 7 Debian, Fujitsu, Mcafee and 4 more | 27 Debian Linux, M10-1, M10-1 Firmware and 24 more | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
| Calls to EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate may overflow the output length argument in some cases where the input length is close to the maximum permissable length for an integer on the platform. In such cases the return value from the function call will be 1 (indicating success), but the output length value will be negative. This could cause applications to behave incorrectly or crash. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x). | |||||
| CVE-2021-23839 | 3 Openssl, Oracle, Siemens | 8 Openssl, Business Intelligence, Enterprise Manager For Storage Management and 5 more | 2023-11-07 | 4.3 MEDIUM | 3.7 LOW |
| OpenSSL 1.0.2 supports SSLv2. If a client attempts to negotiate SSLv2 with a server that is configured to support both SSLv2 and more recent SSL and TLS versions then a check is made for a version rollback attack when unpadding an RSA signature. Clients that support SSL or TLS versions greater than SSLv2 are supposed to use a special form of padding. A server that supports greater than SSLv2 is supposed to reject connection attempts from a client where this special form of padding is present, because this indicates that a version rollback has occurred (i.e. both client and server support greater than SSLv2, and yet this is the version that is being requested). The implementation of this padding check inverted the logic so that the connection attempt is accepted if the padding is present, and rejected if it is absent. This means that such as server will accept a connection if a version rollback attack has occurred. Further the server will erroneously reject a connection if a normal SSLv2 connection attempt is made. Only OpenSSL 1.0.2 servers from version 1.0.2s to 1.0.2x are affected by this issue. In order to be vulnerable a 1.0.2 server must: 1) have configured SSLv2 support at compile time (this is off by default), 2) have configured SSLv2 support at runtime (this is off by default), 3) have configured SSLv2 ciphersuites (these are not in the default ciphersuite list) OpenSSL 1.1.1 does not have SSLv2 support and therefore is not vulnerable to this issue. The underlying error is in the implementation of the RSA_padding_check_SSLv23() function. This also affects the RSA_SSLV23_PADDING padding mode used by various other functions. Although 1.1.1 does not support SSLv2 the RSA_padding_check_SSLv23() function still exists, as does the RSA_SSLV23_PADDING padding mode. Applications that directly call that function or use that padding mode will encounter this issue. However since there is no support for the SSLv2 protocol in 1.1.1 this is considered a bug and not a security issue in that version. OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.0.2y (Affected 1.0.2s-1.0.2x). | |||||
| CVE-2021-23336 | 6 Debian, Djangoproject, Fedoraproject and 3 more | 12 Debian Linux, Django, Fedora and 9 more | 2023-11-07 | 4.0 MEDIUM | 5.9 MEDIUM |
| The package python/cpython from 0 and before 3.6.13, from 3.7.0 and before 3.7.10, from 3.8.0 and before 3.8.8, from 3.9.0 and before 3.9.2 are vulnerable to Web Cache Poisoning via urllib.parse.parse_qsl and urllib.parse.parse_qs by using a vector called parameter cloaking. When the attacker can separate query parameters using a semicolon (;), they can cause a difference in the interpretation of the request between the proxy (running with default configuration) and the server. This can result in malicious requests being cached as completely safe ones, as the proxy would usually not see the semicolon as a separator, and therefore would not include it in a cache key of an unkeyed parameter. | |||||
| CVE-2021-23017 | 5 F5, Fedoraproject, Netapp and 2 more | 13 Nginx, Fedora, Ontap Select Deploy Administration Utility and 10 more | 2023-11-07 | 6.8 MEDIUM | 7.7 HIGH |
| A security issue in nginx resolver was identified, which might allow an attacker who is able to forge UDP packets from the DNS server to cause 1-byte memory overwrite, resulting in worker process crash or potential other impact. | |||||
| CVE-2021-22884 | 5 Fedoraproject, Netapp, Nodejs and 2 more | 13 Fedora, Active Iq Unified Manager, E-series Performance Analyzer and 10 more | 2023-11-07 | 5.1 MEDIUM | 7.5 HIGH |
| Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to DNS rebinding attacks as the whitelist includes “localhost6”. When “localhost6” is not present in /etc/hosts, it is just an ordinary domain that is resolved via DNS, i.e., over network. If the attacker controls the victim's DNS server or can spoof its responses, the DNS rebinding protection can be bypassed by using the “localhost6” domain. As long as the attacker uses the “localhost6” domain, they can still apply the attack described in CVE-2018-7160. | |||||
| CVE-2021-22883 | 5 Fedoraproject, Netapp, Nodejs and 2 more | 9 Fedora, E-series Performance Analyzer, Node.js and 6 more | 2023-11-07 | 7.8 HIGH | 7.5 HIGH |
| Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to a denial of service attack when too many connection attempts with an 'unknownProtocol' are established. This leads to a leak of file descriptors. If a file descriptor limit is configured on the system, then the server is unable to accept new connections and prevent the process also from opening, e.g. a file. If no file descriptor limit is configured, then this lead to an excessive memory usage and cause the system to run out of memory. | |||||
| CVE-2021-22696 | 2 Apache, Oracle | 6 Cxf, Business Intelligence, Communications Diameter Intelligence Hub and 3 more | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
| CXF supports (via JwtRequestCodeFilter) passing OAuth 2 parameters via a JWT token as opposed to query parameters (see: The OAuth 2.0 Authorization Framework: JWT Secured Authorization Request (JAR)). Instead of sending a JWT token as a "request" parameter, the spec also supports specifying a URI from which to retrieve a JWT token from via the "request_uri" parameter. CXF was not validating the "request_uri" parameter (apart from ensuring it uses "https) and was making a REST request to the parameter in the request to retrieve a token. This means that CXF was vulnerable to DDos attacks on the authorization server, as specified in section 10.4.1 of the spec. This issue affects Apache CXF versions prior to 3.4.3; Apache CXF versions prior to 3.3.10. | |||||
| CVE-2021-22570 | 5 Debian, Fedoraproject, Google and 2 more | 8 Debian Linux, Fedora, Protobuf and 5 more | 2023-11-07 | 2.1 LOW | 5.5 MEDIUM |
| Nullptr dereference when a null char is present in a proto symbol. The symbol is parsed incorrectly, leading to an unchecked call into the proto file's name during generation of the resulting error message. Since the symbol is incorrectly parsed, the file is nullptr. We recommend upgrading to version 3.15.0 or greater. | |||||
| CVE-2021-22207 | 4 Debian, Fedoraproject, Oracle and 1 more | 4 Debian Linux, Fedora, Zfs Storage Appliance Kit and 1 more | 2023-11-07 | 5.0 MEDIUM | 6.5 MEDIUM |
| Excessive memory consumption in MS-WSP dissector in Wireshark 3.4.0 to 3.4.4 and 3.2.0 to 3.2.12 allows denial of service via packet injection or crafted capture file | |||||
| CVE-2021-22174 | 3 Fedoraproject, Oracle, Wireshark | 3 Fedora, Zfs Storage Appliance, Wireshark | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
| Crash in USB HID dissector in Wireshark 3.4.0 to 3.4.2 allows denial of service via packet injection or crafted capture file | |||||
| CVE-2021-22173 | 3 Fedoraproject, Oracle, Wireshark | 3 Fedora, Zfs Storage Appliance, Wireshark | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
| Memory leak in USB HID dissector in Wireshark 3.4.0 to 3.4.2 allows denial of service via packet injection or crafted capture file | |||||
| CVE-2021-22119 | 2 Oracle, Vmware | 2 Communications Cloud Native Core Policy, Spring Security | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
| Spring Security versions 5.5.x prior to 5.5.1, 5.4.x prior to 5.4.7, 5.3.x prior to 5.3.10 and 5.2.x prior to 5.2.11 are susceptible to a Denial-of-Service (DoS) attack via the initiation of the Authorization Request in an OAuth 2.0 Client Web and WebFlux application. A malicious user or attacker can send multiple requests initiating the Authorization Request for the Authorization Code Grant, which has the potential of exhausting system resources using a single session or multiple sessions. | |||||
| CVE-2021-22112 | 3 Oracle, Pivotal Software, Vmware | 8 Communications Element Manager, Communications Interactive Session Recorder, Communications Unified Inventory Management and 5 more | 2023-11-07 | 9.0 HIGH | 8.8 HIGH |
| Spring Security 5.4.x prior to 5.4.4, 5.3.x prior to 5.3.8.RELEASE, 5.2.x prior to 5.2.9.RELEASE, and older unsupported versions can fail to save the SecurityContext if it is changed more than once in a single request.A malicious user cannot cause the bug to happen (it must be programmed in). However, if the application's intent is to only allow the user to run with elevated privileges in a small portion of the application, the bug can be leveraged to extend those privileges to the rest of the application. | |||||
